

Study of nitrate transfer in the unsaturated zone of two agricultural plots (northern France)

Backgroung

- The impact of fertilization in water quality trough the unsaturated zone is difficult to predict because several processes are occurring.
- > These processes are not only linked to agricultural practices but also to climatic and geological environment.
- > The forecasts are also made complex because these processes vary with time.
- Concentrations in the unsaturated zone and in groundwater are the result of the practices of several years or even more

Aim of the study

Determine the transfer speed of water and nitrates in the unsaturated zone (i.e. soil and subsoil up to the groundwater)

- > Catchment of Landifay in North of France
 - Chalky aquifer
 - Agricultural area

Establishing nitrogen profiles in the unsaturated zone

Method:

- Profile in agricultural plot with an "agricultural marker" in the crop succession
 - "agricultural marker" = radical change of practice
- Nitrate concentration out of the agricultural marker is lower than the one out of conventional period
- it is possible to determine the fallow period depth thanks to the concentration

Drilling and analyses

- > Drilling and analyses were realized in september 2013
- Sampling every 25 cms (surface 0-6 m) then every 50 cms
- Measure of humidity and all the forms of nitrogen (nitrates, nitrites, ammonia) in soil

Situation of drilling sites on the area of Landifay

Profiles on the football field

Le Hérie, comparison between the nitrogen contents in the three drillings

Good agreement between three profiles

->inputs do not create a random signal in the soil

Géosciences pour une Terre durable

Le Hérie, stocks trends

 Caculate the cumulated amound of nitrogen in soil was calculated in the 10 first meters deep

-> the most recent period create the least important stock augmentation

 Regression analysis was permormed on coherent segment

Le Hérie, results

> Calculated average speed:

Approximately 0,60 m / year

> Average thickness on the catchment:

Approximately 30 m

> Time of theoretical transfer from the surface to the top of the groundwater table:

Approximately 50 years

Conclusions

- > The results show improvements in the practices of these last years
- > The results show a long time of transfer for nitrogen (several decades)

> The experimental phase :

- Allows to calculate speed transfer and stock
- Allows to obtains very didactic results for farmers and stakeholders

